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PRINCIPLESOF DESIGNING DISTRIBUTED NETWORKS

by
N. Ikeno

ABSTRACT

This article describes the synthesis of distributed networks with

prescribed characteristics along with the method of approximation of their

characteristics. The networks consist only of cascade and parallel connections

of distributed elements of equal lengths. In such networks with elements of

equal lengths, similar treatment as in lumped networks would be possible with

X = j tan (ir f/Z f 0 ) as a variable. But here some special features are encounter-

ed with, which are very different from those in lumped networks; i.e., X = + 1

will be transmission zeros, and as for network configuration, use of close

coupled coils and series elements should be avoided. In spite of such restrict-

ions on construction, an important conclusion was obtained, that a transmission

function is always realizable which has transmission zeros only on the imagin-

ary axis and at + I on the complex X- plane. The proof is presented, accompan-

ied by the manners of construction, approximation of a characteristic with func-

tions having poles at X = + 1, especially procedures to obtain Tchebycheff

characteristics and several design examples. Some citation is also made on

the construction of 2-terminal distributed networks.
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1. PREFACE

It was very recent that the theory of designing networks was established

for distributed networks that enables the realization of prescribed behaviors,

which showed a remarkable achievement in lumped networks. There might

have been ideas to substitute a lumped network by its direct corresponding

distributed one; but here the first difficulty experienced is the series impedances,

which, in case of parallel wires, would constitute unbalanced elements and may

be subject to undesirable radiation, or, in case of a coaxial structure, require

double-shielded elements. Another difficulty may appear at the connecting

parts of separate sections, and some amount of phase shift would be inevitable.

Therefore the direct conversion can only be a rough approximate one.

On the other hand, according to a newly developed theory, no series

elements are needed, and the connecting parts are realized easily as cascade

elements, leading to excellent characteristics. It was Richards 1 that gave a

clue to the theory. He presented the famous "Key Theorem", which was
15 1617

applied to a design principle by the author, followed by papers by
2 3 8 4 5 6

Matsumoto and Hatori , Kuroda Ozaki , Kasahara and Fujisawa

It may be noteworthy that the theory has been developed mostly by our

countrymen. This article is a brief record of achievement made by the

writer.

2. PRELIMINARY CONSIDERATIONS

As stated in the preceding section, the networks treated in this article

have following features:

(i) They are constructed only by cascade and parallel connections of elements.

In other words, there is a restriction that no series connection is

permitted, in a sharp contrast with the lumped networks. Instead, cascade

connections are introduced which may bring about new possibilities. Let us

add two more restrictions so as to make the theory simpler.

(ii) The electrical length of all the elements are equal.

(iii) Any line that branches off from the other never joins the original.
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The writer gives the name "tree-and-branch" type networks that satisfy

these 3 conditions. Most of the synthesis described later is concerned with

this tree-and-branch type networks. But since this status restricts the

characteristics obtainable to a certain amount, some closed loops will also

be permitted if necessary, under the condition below:

(iii)' Any loop consists of even number of elements.

The networks will be called "normal", that satisfy the conditions (i), (ii)

and (iii)'. But in this article only those closed loops are needed, that consist

of 4 elements. They are termed "unit loops".

Now, let the frequency range of interest be from 0 to f , and let a unit
0

element be a line with a length equal to a quarter of the wave length at fo.

The frequency character of a normal network will be periodical with a period

( " fo, fo). Therefore f 0 should be so chosen that the periodicity is of a

desirable one. Here define a complex parameter

1-jtan I/f

and transform the interval ( - f 0 ) into ( - j co, j co) on the imaginary axis.

Then a distributed network can be treated in a similar way as in lumped

networks.

Consider a unit element of characteristic admittance a, and rewrite the

well-known transmission line equations in X, we have (Fig. 1).

___ __ _ 2 1, +,'" -: ,v', V, 'IA' 14.+ a~l--A"' 'L(2)

al .1'

Fig. 1. A unit element I A" vi._ A2 .2

It follows that the cascade matrix has the form

1 1
1a ( 3)

; i T A I ,
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As is evident from Eq.(Z) the input admittance of the line with the other

end short- or open-circuted will be, respectively,

a

Y-' Y-=a (4)

which are formally of the same form as in the case of an inductance or

capacitance in lumped networks. Hereafter, they will be called by the same

names or represented in the same notations as in lumped networks. Thus,

the presence of two elements corresponding to fundamental elements in

reactance networks would make it possible to construct any reactance networks

without mutual inductances if series connections could be permitted. The

series connections can only be admitted in the intermediate stage of synthesis,

but should be completely excluded in the final networks obtained.

As already stated, the new "cascade" elements will be introduced into

distributed networks. A cascade element is essentially one with 4 terminals

like a gyrator or a pair of coupled coils. Since its cascade matrix is given

in Eq. (3 1 as X-w oo it reduces to

(~: *~)(5)

which is of the same form as that of a gyrator except the fact that its entities

are imaginary (of course it can never by nonreciprocal). This is the reason

why a cascade element plays an important role.

Suppose that the cascade element is terminated in an admittance Y,(X),

the input admittance will be

a Y ' *A

a+,AY..A (6)

If Y (X ) is a rational function, then Yi(X) will also be a rational function.

It will be understood that the two-terminal admittance of a "tree-and-branch"

network is always a rational function of X. As shown later, a general normal

network has a rational admittance. Hereafter it is assumed that any two-

terminal dmittances are rational.
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As seen from Eq.(6) the degree of Yl(X) will be 1 higher than that of

Y 2(X in general. But when Y 2 (-1) >o, a may be so chosen that

S -(7)

In that case the numerator and denominator of the right hand side

of Eq. 6 have a common factor 1 + X, and Yl(X) and Y2 (X) will be of the

same degree after Y 1 (k) is made into a prime form. Let us say, as seen

in this case, that a network is " degenerate" if it contains cascade elements

that do not effect the degree of the input admittance of the network.

Let X = 1 inEq.(6,one obtains

YI(l) a (8)

and therefore the condition Eq. 7 may also be written YI(1) Y?(- 1).

Furthermore, from Eq.(6) one obtains

Yl(1)=Y 2'-I

(8a)
{Y(1)+Y 1(-I)1 1Y1 I,-Y.--1) 0

from which it follows that, in a nondegenerate case,

Y 1)+ Y,(-1) =0(9)

Solve Y 2 (X) from Eq. (6) one will obtain

Y( ) -A t1 (10)

Here holds the following important theorem.

(Theorem) If YI(X) is any positive real function, Y2 (X) given by Eq.(10)

is also positive real, and if

Y,(l)+Y,(-1) 0 (lOa)

then the degree of Y2 (X) is 1 degree below that of YlQ.), and if not they are

of the same degree.
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This is the famous "Key Theorem" due to Richards 1 , and can be proved

from the properties of positive real functions. The proof will be made easier

by the use of the properties of echo transmission coefficients 1 . According

to this theorem, any distributed admittance Yl(k) can always be presented

as a cascade of a unit element of characteristic admittance YI(l) and the

admittance Y2 (X) given by Eq. (10). Specifically, if Yl(X) is a Foster, than

Eq. (9)always holds and degeneracy does not occur, so that the degree

reduction takes place on each separation of unit elements. Hence follows

the corollary:

(Corollary) A reactance two-terminal network can be synthesized by

unit elements of the same number as its degree.

This simple configuration is a specific feature of distributed networks.

In a lumped network, a similar configuration, cascade of all-pass networks,

may also be possible but the number of elements required will be twice the
20

degree

Here will be described certain important properties pertaining to Eq. (10).

Let Yl(%) be a reactance, and its zeros and poles at finite frequencies be in

the order

0 ,,< ,,,., < . .. < , < '70 (10b)

as shown in Fig. 2 (A). Say, for instance, W, is a zero and w 2 a pole, then

Y (,, --j,,Y , ( (10c

Y(j",,2 ) Yj(1) (10d)(012

The former is a negative imaginary, and the latter has a positive imaginary.

A zero of Y?(X) should come between these two points. Similar relations hold

for poles of Y2 (X). Thus, let the zeros and poles of Y,(X) be o < i1 <W .

< wn- < co, then these points will be arranged alternately in the following way:

0 ", ,, ,. < ...... < I<,..,' < ,v (10e )
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'W€ )W 4:!

(A )

Fig. 2. Shifting of zeros and poles of a reactance

This fact may also be interpreted as below. Zeros (or poles) of Yl(X)

will, through the transformation Eq. (10) be shifted upwards, but cannot exceed

the adjacent pole (or zero). The higher of the highest of zeros and poles will

go to infinity.

The properties of cascade elements have been made pretty clear. Here

the writer would like to present a rough view of parameters used in specifying

4 - terminal networks, for the convenience of the readers who are not

accustomed with network theory.

A cascade matrix (hereafter called K-matrix) is usually written in the

following form:

K =A B'
C D1. (11)

From the condition of passivity and reciprocity, there is a relation

AD-BC 1 (12)

In the next place, as for th. admittance matrix (Y - matrix).

Y Y1 Y12 i
Y"-- y T, y(13)
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there is a relation Y12 = Y21 and the relations between Y - matrix and

K - matrix are

Y1I--D Y2=A _1 (14B B B(14

Impedance matrices are not used in this article, but the open-circut

admittances Y10 , Y2 0 may be used in their places:
I __ CI

y" Z1 1, -A' Y21= Z, 2 D (15)

The input admittance for unit admittance termination is

Y = C+D : y1,,_ Y,,/ = Y11 Y,21,,+1, (16)A+B Y 22+1 Y;!,+1

Normalization of terminating admittance to unity does not lead to loss

of generality. Therefore all terminating admittances are considered to be 1

except for the case of matching networks.

To specify a 4 - terminal network, its K-matrix or Y-matrix will suffice.

Sometimes Y and Y10 (or Y22 and Y2 0 ) will be given, or only the input

impedance will be given. In the former cases, the only undertermined are

the ideal transformers at the output ends, whereas in the latter cases, an

all-pass in the output terminal will give no change, but the amplitude-trans-

mission characters are completely determined, and it will lead to a sufficient

answer to the problems of filter design, etc.

3. PROPERTIES OF DISTRIBUTED 4 - TERMINAL NETWORKS.

If a unit element is considered to be a 4 - terminal network, its K-matrix

will have a form Eq. (3) The K-matrix of a network consisting of n such

elements (called a "bar" network) should be

____, _____. ___________ 1 (v,(Ay , ,Aj'1  i (17)-_____________ _ K = (VIji A2)" (17) ) v ,( ))

Fig. 3. A bar network
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since it is a product of n matrices of the form Eq.(3). Here v v200

are even polynomials with constant terms 1, u 1 (X ), u2 (%) are odd polynomials.

If n is odd, then v1 and v2 are of degree n, u and u 2 are of degree n- i;

if n is even, vice versa. The degree of the K-matrix is defined to be the highest

of the degrees of the four polynomials. Among these four polynomials there

is a relation

vI(A) v2(A)-Ii(A) i,2(A) % . I !)" (18)

which is derived from Eq.(l2). Entries of Y-matrix may be represented by

the polynomials

y,,; ) .= _ (Jl-- ) " (19)
Ui () -'

It is a specific feature of a distributed network that Yi,(k) has a factor
I n(jl-X )X . If the entries of a Y-matrix have the form Eq. (19) and if v (),

I
v (k) are polynominals with constant terms 1, and if Yll(k), Y2 2 (X) are

reactance functions of degree n, and if a function u (X) exists that satisfy
Eq. (18) then the network can be realized as a bar network. The last condition

above cited may be expressed that all determinants of residues of poles of

Y-matrix should be zero (residues of poles should be perfectly compact, by

Ozaki's words).

One more thing should be added in connection with a bar network. Of the

4 polynominals, if one odd and one even polynomials are known, the remaining

two polynomials are uniquely determined. That is, if one of Yll, Y2 2 , Y01

or Y02 is known, the network will be perfectly determined. The reason is

simple, let, say, Y. 2 is given, then since it is a reactance of degree n, it

can be realized by a cascade connection of n-elements. Put two terminals

at the very end, and the network is obtained, because there can be no other

networks that have the same Y22(k ).
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Let us go a step further, into a network whose junctions have open-circuit

elements in shunt, as shown in Fig. 4. Such a network is called a simple

Fig. 4. A simple open-branch network

open-branch network. The K-matrix of a shunt element with characteristic

admittance b will be

[A:l; 01}. (20)

Therefore the K-matrix of a simple open-branch network will be represented

as a product of K's of the form Eq. (3)and K's of the form Eq. (20). Its form is

the same as Eq.(17), where the constant terms of v i( ) and v 2 () are 1,
relation Eq. 18 also holds, and the entries of K-matrix have the form Eq. (19).
The only difference is that in the present case, the degree of K-matrix is

higher than n. Let the number of shunt elements be v, then the total number

of elements is n + v, and the degree of K-matrix can be n + v at most. This

may not always be equal to n + v. For instance, in case Y and Yl 0 have
poles at X = o, the addition of shunt element Xb at the input terminal will
have no effect on the degrees of Y and Y 0 In these cases, there exist

equivalent networks with a number of elements equal to the degree.

A more general 4-terminal network shall be considered. Take the case

shown in Fig. 5, where the shunt elements are replaced by more general

Fig. 5. A tree-and-branch network
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reactances. Xb in Eq. (20) should be replaced by the corresponding reactances,

and K-matrix will take, in general, a form

- 1 v, A t, A (2 1 )

(4/1~AIYAA)1 vv V2A

where vl(X), v,(,), w?(X) and f(X) are even polynomials, and ul(k) is an

odd one. Among the constant terms of v l(k), v,(X) and f(X ), there are the

following relations

t',(0) -. f(O) > O, v2(O) >.f(O)>O. (22)

Therefore, amond 4 entries A, B, C and D of K-matrix, only C can have

a pole at X =0, and it can be simple at most. If all the other ends of the

shunt lines are open-circuited, even this pole vanishes and K-matrix take the

following form

1 T v,(A ) u,(A) (

It should be noted here that the constant terms of vl( ), v,(X) and f(X)

become equal. Call such a network an "open-branch" network.

It is needless to say that the relation

w,( A) _ I,,,(U,24
vI(A) v2(A --u(A) - (24)

holds for Eq. (21). and the relation

for Eq. (23).

Y-matrices will be found to have the form

NI(,A' ' Ym ~ VI '-- ,,, A)' (26)

Y12(A)( A)
U,(A)
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Fig. 6. A network with a loop

Roots (zeros) of f(k) are poles of shunt admittances and lie only on the

imaginary axis, as they should be.

Next, the case will be considered, which has a closed loop or loops. A

simple example is shown in Fig. (6), which consists of two tree-and-branch

networks in parallel. Its Y-matrix is the sum of those of constituent networks;

and so Y1 1 (X) and Y2 2 (X) are evidently rational reactances, and Y12 (X) has the

following form

Y,2(A) --.- (V'l -_A'2.'f) A).._ ( fJi-- -)" , '
u,(A ) u1,(,A)'

-1 _ ( l A ") ' f t A ) , , A ' + ( . ---, ' ' f ( ) ' , ,( A ( 2 7 )

where it is taken thatl'>1.

The number of elements building up a closed loop is even, so that the

sum of I andl ', numbers of cascade elements in both constituent networks,

is even, and their difference is also even. Therefore the expression in

j } in Eq. (27)is a rational polynomial. It follows that the entries of Y-matrix

for this case has the same form as Eq. (26). A similar consideration goes

also for more complicated cases. But, in general, as to be seen from Eq. (7)

the zeros of the polynomial in { }are not constrained on the imaginary axis.

From the above consideration, entries of Y-matrix of a normal reactance 4-

terminal network should have the following properties:
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(i) They have the form Eq.(26),

(ii) Y 1 1 (X) and Y 2 (k ) are rational reactance functions,

(iii) Determinants of residues of poles are non-negative,

(iv) v 1(O) > f(o) >0, v 2 (O)> f(o) > G

Of these conditions, (ii) and (iii) are such that should be for reactance 4-

terminal network. These are the conditions necessary for a normal network,

but not sufficient. If the series elements and ideal transformers are permitted,

these conditions become sufficient.

Conditions on K-matrix may also be stated. The K-matrix of a normal

network should have the following properties:

(i) They have the form Eq. (21),

v 2 (X ) + x-i
(i) Y(X) v (x) + u l is a positive real function,

(iii) Eq. (24) holds

(iv) v (0)> f (o) '>o, v 2 (o)>f(o)>o

Further, let us call the case an "open-branch" network, where the equalities

hold in (iv).

Now, several theorems will be described that will be of use in the

transformation of networks. The first one corresponds to Richards' Theorem

extended into open-branch 4-terminal networks.

(Theorem) If the Y-matrix of a 4-terminal network satisfies the 4

conditions above described, with equality in (iv) and I> 1, then, after

separating a unit element Y 1 I(1) from the input side a3 a cascade element,

the entries of the Y-matrix of the remaining network can be represented by

Y11' A) =Y 11(l) *}'Il(.A)TA Y" 1()
Y11 (l)-A Y(IA'

'( )Y,( ._, (28)- , .
Y,(1)-" ) ,,() '

Y,,S 1)-A Y,1( --
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wher e
4Y,,(A) Y22(A)- Y]2(A)'

(28a)

and these again satisfy the above 4 conditions with equality in (iv).

This theorem can easily be proved from the properties of the Y-matrix

and those of positive real functions. This theorem is also true in certain

cases of networks that are not open-branch ones.

This theorem states, with regard to the K-matrix, that the matrix, obtained

by multiplying the matrix Eq. (23)by the reciprocal

I A
1 i 1 (29)

-Aa 1

of the matrix Eq. (3)from the left, will also satisfy the conditions of the K-matrix

of an open-branch network. Here, in the above expression,

v,(1 _ .(I)(30)
a =. ,( 1 -.. ( ) ""V;() --: Y(II)

The following theorem is an important one in converting a series element

into a shunt one. (Fig. 7).
b/A

(A) (B)

Fig. 7. Transformation between a series element and a shunt element

(Theorem) A network, built up with a unit element a with a series

inductance bA at one end, is equivalent to another network built up with a

unit element d with a shunt capacitance cX at the other end. Here the values

of the elements should satisfy the following relations.

d- abc= -.... d!.. .
a+b' a+b

or 1(31)
a = c+d, b d!

C
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Kuroda gave rules of transformation for the cases of a series capacitance,

a shunt inductance as well as of a resonant circuit, but all these cases either

ideal transformers or close coupled coils are necessary. These transformations

are , in general, a kind of inverting the order of transmission zeros in

cascade networks, and one of the papers treating this problem in lumped
21domain was prepared by Yamamoto

The following corollary comes out directly from the above theorem.

(Corollary) The network Fig. 8 (a) has always an equivalent network

Fig. 8 (b),A
.A fA

(A) (B)

Fig. 8. Transposition of a shunt capacitance

wherein the values of the elements have the following relations

d =a+b, e+f= c,

1±1 1 1 (32)

b c d e

A theorem will be presented which is of use in eliminating negative

elements.

(Theorem) Take a Bruner section with a negative inductance in series

with a unit element as shown in Fig. 9 (a),

____ -A CA

A) U)
b, - (32a)

Fig. 9. Transformation into a unit loop b
(32b)

then it can be transformed into an equivalent unit loop with no negative elements

(all alphabets are to be of positive values). The conversion equations of the

elements are given as follows
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C-- bel)' t-a):
P

cd (b --a 
p (33)

bd b+air
g~ .-.. ap ,

where h ad(b+a"

P (33a)

p - b' + '-(ad+bc).

The equivalence may be readily seen if one calculates the Y-matrices of both

networks. The network Fig. 9 (a) can also be transformed into the form Fig. 10,

Fig. 10. Equivaleit network of Fig. 9(a)
where the condition of capability of transformation without negative elements,

that is, the condition which corresponds to a > b in the above, is that only the

capacitance at the left end is negative and all other elements have positive

values. The condition of close coupling takes the form

' . al+c+d (33b)

Moreover, if there follows another cascade element to the riht, the inductance

cA can also be transformed into a capacitance. Consequently a very important

result can be obtained that any standard network, in which capacitances and

resonant circuits are connected in turn alternately separated by cascade

elements, can always be transformed into a network with only positive elements,

if it is a passive network, even if some the shunt capacitances are negative.

Lastly, a short description will also be made on the case where the

inductance of the resonant arm is negative, as shown in Fig. 11. This is the

6/F '/k

Fig. 11. The case of real zero
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case where the resonance frequency, and consequently the zero of Y12 (X)

is on the real X-axis. Comparing this case with the former, the only difference

is the substitution

-h -b, d - d, ' ----,- (33c)

and the transformation representations into a unit loop can readily be obtained
from those for the former case. As one will see, the condition of getting no

negative elements is

(34)

4. CONSTRUCTION OF 4-TERMINAL NETWORKS

In this chapter it will be discussed how to construct a network with
prescribed 4-terminal parameters. The prescriptions may be made in K-matrix,
Y-matrix or input impedance; but K-matrix will be the most convenient in

considering conditions of realizability, because in Y-matrix or input impedance
some common factors in the numerator and denominator may be cancelled.

Now, a K-matrix has in general the form Eq.(2l), and the Y-matrix

thereof is given by Eq.(26). It has already been described that there are

the relations

vI(O)'fP) >O, V/O)>f(O)>O (35)

When inequalities hold in these expressions, residues at X = o are not compact.

Then surplus residues can be taken out as shunt inductances as shown in

Fig. 12, so that the 3 residues of the remaining network are equal. That is,let

Fig. 12. Transfotmation into an open-branch network
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f74i) L~= '" (36)

then the residues of Y1 1 Y22 and YI2 will be

v(0) VIO) M(O) (36a)

so that the inductances to be taken out from the input and output ends are

_Vo)-fo) v,(o)-f(O) (37)

Needles to say, these can be realized by elements of characteristic
admittances {V 2 (o) - f(o)}/c and {V (o)-f(o)}/ca with far ends short-circuited.

As for the remaining network, equalities hold in Eq.(35), so that the constant
term of W2 (k) should be 0, which means that the K-matrix should take the
form Eq. (23) and the network must be of an "open-branch" type.. Consequently
the whole problem will be solved if the synthesis of open-branch networks is
established. For that reason, the discussion will be constrained .only to open-
branch networks. Of course, it is also possible to take out shunt inductances
in the intermediate parts, not at the beginning, and get sometimes element
values easier for realization. The way-of taking out shunt inductance at
first is only for the purpose of making the treatment simplier.

Now, let the prescribed K-matrix be

K 1 (vU,(A) VI(M)

Here the relation

VIMV(A) v,,-ul(,) u.X() == (1-22) J(A)2 (39)

holds. As is clear from the expressions of operating transmission coefficients
to be described in the next chapter, roots of f(X ) give transmission zeros of

the network, and most of them lie on the imaginary axis of X in practical
filters. For this reason, only the case will be treated where the roots of
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f(X) lie only on the imaginary axis. This is, as stated in the preceeding

section, a necessary condition to be a tree-and-branch type network, and

the procedure described below are, in general, to get to such structures.

Multiply the 5 polynomials of K-matrix by an appropriate constant, so

as to make the constant terms of the even polynomials unity. Then f(k) may

be written in the form:

(A) = (I+ ...... (1+ )

(40)0<o ,, ...... #< (0

Here, the number of transmission zeros at finite frequencies is taken to be m;

another transmission zero at X=oo may also be possible. Let the degree of

the K-matrix be n, then the multiplicity r of the transmission zeros at X =co

be

r n. - 2r, - (41)

Considering that the transmission zeros at finite frequencies make pairs

(positive and negative), and also that there are 1/2 transmission zeros at

X = + 1, the above expression shows that the total number of transmission

zeros is equal to the degree of the K-matrix, as should be.

The general network realizing such a K-matrix will take a form shown

in Fig. 13 (a). This may be rewitten in the same form Fig. 13 (b), which

(A) (W)

Fig. 13. Standard form of a tree-and-branch network

corresponds to a ladder type structure Fig. 14 in lumped networks. The

Fg T T

Fig. 14. A ladder network
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series inductances are changed into shunt capacitances between cascade

elements. Consequently the synthesis procedures are also similar. First

obtain the input admittance

Y(A) = V(A-u 2 () (42)v1(A)+u,(A) (2

from the prescribed K-matrix. As was the case in ladder networks, it is

necessary to have a simple transmission zero at X =co in order to have no

negative elements. Thus, one has

Y(oo) =_ oo or Y(-) =:0 (42a)

Even in the latter case, the former relation will hold if a cascade element

would be separated. Therefore only the former case will be considered. Get

C [Y( A) (43)
A ,,

This is the maximum capacitance that can be taken out at the first stage.

The value of Y(k) at a finite transmission zero will be, by Eq. (39)

( .) ,(j.w) (43a)
Y(ityr) - - e -v( - imaginary

Therefore

C - y(l)-jv Y(j,.) l+#J (44)

becomes real. Obtain the values of ClV for all transmission zeros; some of

them may be negative, and some positive. Let the smallest among C 1 0 and

those of positive values of C 1 be C , and take out XC 1 as a shunt element.

The remaining admittance is

(45)
Y,(A) = y(A)-AC,,
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Let C1 CI, then by Eq. (44),

Y(1) =jao, Y,(jk.), (46)

Since C <C1 0 , it follows that Yl(oo)= o. Take out a cascade element YI(l)

from Yl(k), then the remaining admittance will be

Y2(A) = Yl()-) Y,() (47)

This is seen to have a pole at X = a by Eq. (46). Take out this pole as a

resonant arm, That is

aJ(48)
Y3(A) = Y2(A)- 2(48)

where a,, =CY.() A+i,,

(48a)

This resonant arm can be represented by the cascade of two elements with

values a /(1+ CA2) and a,./{(1+0'Z)0' 2 }. Here also

Y:(-o) = Ys(o) = 0 (48b)

Therefore after taking out a cascade element Y 3 (1), the remainder

Y 4 (k) satisfies Y4(co)=co. Thus a stage has been completed which corresponds

to a transmission zero j (7i .The procedure will be repeated, just as in the

way followed in the original Y(k).

If, in the first step, C10 is the smallest, the pole of Y(k) at X=co is

completely taken away, resulting in a transmission zero. If any more

transmission zeros remain at X = oo, one will have Yl(cO)= 0, and after

taking out a cascade element Y1(1) the remainder will become Y2 (co) =o. The

first stage ends here in this case. In ordinary cases transmission zeros

at X = co will be taken out after all the transmission zeros at finite frequencies

are taken out. After all the transmission zeros (including X =co) are taken out,
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Y(X) may not still be equal to a constant 1, and then cascade elements will be

taken off one after another, and finally one will get Y(X )=1, which is the

terminating admittance, and the whole synthesis ends. This is because the

K-matrix with no transmission zeros on the imaginary axis should have the

form Eq. (17) and should satisfy the condition of a "bar" network.

In the above description, smallest CIv has been chosed in the first stage,

but in some cases those not smallest may also do as well. The above

procedure may be applied to Y1 1(k) in a similar manner, but a special care

will be needed if there are common factors in the numerator and the

denominator of Y 1 (X )= v 2 (X)/ U(). That is, this common factor cancelled

is a transmission zero, as to be seen from Eq. (39), and even if Y 1 1() is

made co at this point, it is not sure that the whole residue of the pole could

be taken out. In such cases one should consider Y 0 (X) along with Y (k).10 11
Moreover, following the procedure and at the last stage one will obtain Y. 2 '1;

if it is smaller than the prescribed Y2 2 (X ), one must connect needy admittances

in shunt to the output terminals.

Kuroda and others use the following procedure instead of the above

stated one. First take out a cascade element Y(l) from Y(X). Then take out

an appropriate series inductance, and then take out a resonant arm. After

that, take out two cascade elements and again take out a series inductance,

and so on. Apply transformation described in the preceding section and

change series inductances into shunt capacitances. Or, take out transmission

zeros as a laddei network, and synthesize the remainder as a "bar" network,

and the whole network is transformed into a "tree-and-branch" one by the

use of transformation formulae given by Kuroda. The computation will,

however, be rather complicated.

The synthesis procedure has been described so far, but it is not always

possible to complete the synthesis with only the conditions stated in the

preceding section. It is very difficult to obtain necessary and sufficient

conditions thereof, so that the following is concerned only to the sufficient

conditions.
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In performing the above procedure, two cascrle elements are needed

to take out a transmission zero at a finite frequency, and when all finite

zeros are taken oit, a pole at X =o is necessarily taken out along with.

Therefore the number 1 of the cascade elements must satisfy

I. : 21?1 r- -- (49)

where r is the multiplicity of transmission zeros at X =co. Of course those

cases should be excluded where two zeros are taken out at a time.

Fig. 15. Alternate way of synthesis

Next comes the problem of negative elements. In lumped networks they

may be realizable if close coupled coils are permitted. In distributed

networks there are no corresponding ones, and would not be realizable in

the original forms. The use of unit loops described in a previous section

will bring out a certain extent of possibility, but here the discussion will be

constrained only to tree-and-branch networks. Kasahara and Fujisawa

have given a sufficient condition to have no negative elements. It is stated

as follows.

"X=o should be a transmission zero, and any of the finite real frequency

transmission zeros Gi' a ,. ... , a should not be smaller than any of the

positive real frequency roots of the four polynomials v (k), v 2 (X), ul(k) and
u2(X "

However this condition can be extended a bit, as can be seen from the proof

below. Consider two admittances

, y A)= I.() (50)
" -(A) v,(A)

Here even if the numerators and denominators have common factors, they

should not be cancelled, but it should, in spite, be considered that the poles
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and zeros are close to each other. Now, if Y(co)=co, then Yll(o)=Oo and

YO(CO)=O, and if X =oo is a transmission zero of multiplicity equal or higher

than 2, the residues of the three admittances are equal, and if the multiplicity

is 1, the residue of either Y11 or YlOp that has higher degree, will be equal

to the residue of Y(X). Furthermore, the residue of the admittance of the

higher degree is smaller than that of the lower degree. This can easily be

seen from

VI( ) ,) ~(A) tt,./)
• ., ) p,() j-: ( -- )'/ )"(51)

which is deduced from Eq. (39), but may also be considered to be true from

a physical sense. Moreover, the highest zero of the admittance of the

higher degree is greater than that of lower degree. Therefore the above

stated condition is that any finite real frequency transmission zero should not

be smaller than the highest zero of either Yll(X) or Yi(X ), which has the

higher degree. Let that of the higher degree be denoted by Yl(X ), then its

degree is n, equal to that of the K-matrix. Arrange its zeros and poles and

give them ordinal numbers beginning from small to large, as shown in Fig.16a.

(A) .- W-3 W 3 AI )
WA) -4' -' -j W .- @

(D) -,.-

Fig. 16. Shifting of zeros and poles

After taking out a cascade element from Y1(X), the zero C n- will move to

ao, the pole Co n- to Co which is smaller than w - as shown in b.

Or, if the pole at X=co [equal to that of Y(k), and can be taken out] of YI(X

is taken out as a shunt capacitance, then w n-I again moves to co, and other

zeros move a bit upwards, whereas the poles do not move, as shown in c.

Therefore, after taking out a cascade element, a pole w n-Z moves to co,

Wn-3 to a point below W n-2' as can be understood from these considerations,

a pole wn.Z can be shifted to any point between wn. and co, if the capacitance
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to be taken out first is properly chosen. Since w is smaller than w n-i'

the pole can be moved to a transmission zero, if the transmission zero is

above the highest zero w n.1. In this case, Y(X) will naturally have a pair

of poles, and since the residues are generally equal, the pair of poles can

be completely taken off as a resonant arm. If Y1 (X) had a common factor,

corresponding to this pole, in its numerator and denominator, some part

of residue will remain unseparated; but this status can be considered

that Z poles are duplicated, so that one may take the matter to have one

of them separated. Upon separating the pole, the zero wn-.3 goes to co.

In the next, upon separating a cascade element, the pole wn-4 goes to oo.

Then the highest zero will be w n-5' In any step of operation, a zero or pole

can not go beyond the adjacent pole or zero, so that w n-5 will be below

Wn-2" Thus again all transmission zeros are located above the highest

zero ( wn ), leading to the possibility of further synthesis.

Further, the highest zero in the second step is below the highest pole

at the beginning, so that it will be comprehended that the following condition

is also sufficient.

X =co should be a transmission zero, and all other transmission

zeros should not be smaller than the greatest root of v l(k) or u i(X), and

at least one of them should not be smaller than the greatest root of v 2 (X)

or u,(X). "

Through above discussions, conditions of tree-and-branch networks have

been revealed to some extent. Now the restrictions on the structure will be

a little loosened, permitting the use of unit loops. This, in effect, to permit

the presence of negative shunt capacitances in tree-and-branch networks, and

such a network may also be called "a tree-and-branch network in a broader

sense ". A sufficient condition of realizability for this case is the following.

"Let finite real frequency transmission zeros be O<a<0. <..<a <00'

then there should exist m+k-1 or more real frequency roots of u1 (X ) that are

not greater thank. "
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7
This is a condition similar to that stated by Fujisawa on lumped ladder

networks. It will be noted that a transmission zero at X = o is here not

necessary. For its proof, Y(X) and Y1I(X) will be taken into consideration,

where common factors of Y11(X) are left uncancelled. Let

cY() CI, (52)

then the shunt capacitance that can be taken out from Y(X) is

-o< C c". (53)

If Y(X) has no pole at oc, C10 is of course taken to be 0. Suppose the allocation

of zeros and poles of Y11(k) is like Fig. (17). Then after taking out C, a zero

k), € t~~l
+ 

0i. 2' &, 3

i I

Fig. 17. Possible shifting interval of poles

say can be moved to any point in the range w.<w< (
A) 

' Here wIi+l,1 1 - i+l* i+l
is a position of a zero if C10 would have been taken out. Take out a cascade

element, then the pole w. can be moved to any point in the range w.< w< w!
1 - - 1

Here UA)! is a position of a pole if C would have been taken out. Thus in
1 10

the above procedure, any poles can be moved anywhere on the thick lines;

and especially the highest pole can be moved up anywhere ranging to 0o.

The larger the value of C to be taken out, the higher the points will move.

Let the smallest among C10 and

1+.,'(S4)cg- (1)-j- .( j.

be C]. If any of Cl. are negative, take the one of the greatest magnitude.

Take out C1 1, then
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Y,(A) Y(5)-5C,,.)

Take out a cascade element Y1(1) and obtain the remainder Y2 (X). Derive

Yll(X) corresponding to Y2 (X),then, from above considerations, the pole that

was just below A in the original Y11(k) will coincide witha0 , but other poles

can not go up beyond transmission zeros. Therefore the relative allocation

of poles and transmission zeros does not change through this procedure. Next,

take out the pole at"' and obtain Y (X). Derive Yll(X) corresponding to
P ~ 3 1

Y3 (X). The pole- vanishes but the positions of other poles remains

unchanged; that is, poles belowy Ahave the same ordinal relation, and as

for transmission zeros above a ', the number of poles of Yll(X) will be

decreased by 1 which do not exceeda M But, in the mean time, the transmission

zero at a is also taken off. Renumber the transmission zeros from small to

large, then there should be m+k-l or more poles of Y11(X) that do not exceed
. If C <0, then of course Y3 (oo)= 0, so that a series inductance can be

taken out. Besides, its value can be so chosen that it satisfy the condition

of close coupling with CI1, just as in the same way as in Bruner procedures.

Thus, make

1'A- (56)

then the corresponding pole of Yll(X) will move a little upwards but cannot

exceed the zero right above it. Take out a cascade element Y4 (1) and make

Y5 (X ); the pole of corresponding Y11(k) will again move upward but cannot

exceed the original zero. Throughout the procedure from Y3 (X) to Y5 ( ), poles

of Y11(X) move upward but never exceed poles right above. Therefore the

number of poles, not higher than 1k ' can decrease, at most, by 1. That is,

it can be stated, that there exist m+k-Z or more poles that do not exceed k .

On the other hand, the number of transmission zeros is now m-l, and if we

rewrite the above number of poles as (m-l)+k-1, then it will be seen that the

initial assumption is kept unaffected.

If, at the first procedure, C10 were the smallest then a transmission zero

at ca will be taken off by taking out C10 . (If C10
= 0, it is only necessary to
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take out a cascade element. ) In this procedure none okthe poles can exceed

the correspondingak. Thus the condition is never broken in any of the

procedures, so that the synthesis can be continued, followed by a decrease

of the degree of Y11(X), until the whole procedure is completed in a finite

number of steps.

In the above proof, no comment has been made on the number of cascade

elements. It can be known as follows that

I > 2m+r- (57)

suffices. Here it is assumed that Y(co) is oco if oo is a transmission zero. If a

finite pole is taken out at the first procedure, m decreases by 1, and I decreases

by 2, and therefore the above relation remains unaffected. For the pole at

X = co, both I and r decrease by 1, and the above relation also remains

unaffected. If, during the procedure, one gets to r=0 and can no more take

out finite transmission zeros, only a cascade element will be taken out,

followed by a decrease of 1 only. But in this case there are no transmission

zeros above the highest pole of Yll(X) (if not, the transmission zero can be

taken out), so that there must be at least 2m finite poles of Y1l(X), if the

number of the remaining finite transmission zeros is m. Therefore the degree

n of the K-matrix is at least 4m, and n=Zm+l+r, but in this case r=0, and

hence we have

I .----- 2 . 2(57a)

It may be seen that the condition Eq. (57) still holds even if I is decreased

by 1. Thus it has been proved that a network having the K-matrix that

satisfies the above condition can always be constructed in a form shown in

Fig. 18. Apply transformations described in the preceding chapter, it may be

Fig. 18. Synthesis of a tree-and-branch network in a broader sense
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transformed into one with only positive elements, as shown, for instance in

Fig. 19.

Fig. 19. A tree-and-branch network in a broader sense

In the above, realizability conditions on K-matrices were treated. Now

consider the case where only the input admittance Y(k) is given. It should

be noted that the number of cascade elements is not specified, and any number

of them can be used in the structure, which was not the case where K-matrices

were given. Of course in this case these cascade elements are all degenerate

except those specified in Y(X). Because of this freedom# the condition of

realizability becomes a very general one as stated below.

(Theorem) If, in an admittance

Y(A) = V+n., (57b)

roots of v 1 v 2 - uIu 2 lie only on the imaginary axis, except the origin, and

on X =+ 1, then a tree-and-branch network, in a broader sense, exists that

has Y(X) as its input impedance.

To prove this theorem, it will be enough that among K-matrices of the

networks having Y(X) as input impedances (there are an infinite number of

such networks), some of them can be shown to satisfy the above conditions of re

realizability. For the prupose, the following two auxiliary theorems should

be proved.

(Auxiliary theorem 1) If n is taken large enough, it is possible to

put any number of roots of even and odd parts of (l+X)n, into any finite interval

(0, jO ) on the imaginary axis.

The even part of (l+X )n may be written

il + A' + i1 - "' /2 (57 c )
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and with X =jtane, this expression may also be written

eJ"O+ e- J" ' _ COS ( 72cos"D - cos"O' (57d)

Its roots have the form 0= (Zk+l)ir/ 2n. Thus the roots of the even part of

(l+x )n are

±jtan (2k+1) (k=O, 1 ,.) (58)

Similarly, those of the odd part are

0, -jtan- A7 (k-1, 2, ..... 2.. (59)
n2

The following auxiliary theorem can be directly deduced from this

consideration.

(Auxiliary theorem 2) Let pl(X) and p2 (X) be even polynomials and

ql(k) and qz(X) be odd polynomials. If

P,(A) P2(A) (59a)

are reactance functions, then the roots of

q( A) = p, (A) q2( A ) + p.A ) q() (60)

lie all on the imaginary axis, and the number of roots lying in the interval

(0,ja) is equal to or one larger than the sum of numbers of roots of ql(X) and

q2 (k ) lying in the same interval. Here a root at X = 0 should be excluded and

any roots of q, (k) and q,(X) that are coincident should be counted as 1.

Its proof can easily be seen from the fact that

p,,A) + pJ - (A= qjf +p._,A)q,() , (61)
qj, A, v A: tl q1 (A) V A)
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is also a reactance function, and has poles of both q, and q2 , and there must

be a zero between two poles.

Now, return to the theorem. Multiplying both the numerator and the

denominator by (l+X) , one obtains

(v,+u, (I+A)'

S(v--,p+t 2q)+(,,P+v2q) (62)
(vlp+uq)+ (1up+ vPq)

where p and q stand for the even and odd parts of (l+X)s. Write this expression

as

V,'+.1' (62a)

then from the relation

-- ( -l /Iii j(63)

one obtains the relation

v, ,:'-.'u. A -- .' ) 2 / (64)

Here it will be assumed that the constant terms of v and v., and consequently

those of v and v are I (this assumption does not limit generality). Then

the corresponding K-matrix can be written

1 v,' ut)'

(,/l_ A, 1! ,' (65)

Now, let any root of f(X) be j ak, then the number of roots of u.(X) that lie

in the interval (0, j Uk) is not smaller than the sum of the numbers of roots

of u1 (k) and q(k) in the same interval. However, since if s be taken great

enough, the number of the roots of q(k) in the interval can be made as large

as desired, so that also the number of roots of ui(X) in the interval (0, j c* k)

can be made as large as desired. On the other hand, multiplication by a

factor (l+X )8 does not affect the number of transmission zeros at finite

frequencies. Consequently, it is always possible to choose the value of s so
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that the number of positive real roots of u.i() smaller thanok is equal to or

greater than m+k-1. Therefore the. network can be synthesized as a tree-and-

branch network in a broader sense.

From this theorem, it has become always possible to realize a network,

having transmission zeros only on the real frequency axis, except the origin

and at X =+ 1, without using any negative elements, if a sufficient number of

cascade elements are used. Moreover, a simple transmission zero can be

located at the origin by the use of a shunt inductance. This status is rather

more general than in the case of lumped ladder networks.

So far, only the cases were discussed where the transmission zeros

lie all on the imaginary axis except k =+ 1. This is almost sufficient for

practical purposes, as stated already, but it would be necessary to discuss

more general cases from the standpoint of the theory of network synthesis.

Even in this article, it has been shown that the synthesis is possible if the

transmission zero lies on the real axis at a point of magnitude greater than

1. Those having transmission zeros on other points cannot be constructed if

only the unit loops are permitted. A general normal network with larger

loops will be necessary to be taken .into consideration to treat those cases,

but it is not the scope of this article. The author only refers to Ozaki's

parallel tree-and-branch networks constitute simple examples therof.

S. APPROXIMATION OF CHARACTERISTICS

It is a very important and interesting problem how the transmission

characteristics of a network can be approximated to a desired one, in the

design of distributed filters or matching networks. In this chapter, the

matters will be discussed one after the other.

First, the discussion will be confined to open-branch networks. Since

% = 0 comes in the pass band, they are appropriate for low-pass filters.

and may also be used as band-pass filters if the periodicity of the

characteristics is taken into consideration.
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The operating transmission coefficient S(X) of a 4-terminal network is,

by the network theory,

A+B+C+D
SM 2 (66)

where the terminating admittances at both ends are taken to be 1. In open-

branch networks, it may be written

S(J)-_tvA)+v2 (A)+u(A)+U2 (A)
2(V1P)'YI(A) (67)

Q(A)

where

g( ) = v,(A)+v2(A)+u 1(A)+u 2(A) (68)2

is a Hurwitz polynomial with a constant term 1. Furthermore, put

h(A) 2 (69)

then the echo transmission coefficients may be written

1+Y(A) =g(A) (70)
1- Y(A) h(A)

Here the condition Eq. (38) should be replaced by

g(A) g(-A)-h(A) h(-A) = (1-P)'(A) (71)

Conversely, if S(X) is given in the form Eq. (67), one can dertermine

the polynomials coming into consideration from S(k). For the purpose, one

should first determine h(k) (not always unique) from Eq. (71), and make

m(k) and n(k) by
m(A) =g(A)-h(J)

"(A) =g(A)+h(A) I (72)

and then separate them into even and odd parts:
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M(A) = V2(A)+u(A), 1 (73)

(A) =vI(A)+U1 (A).

In most cases of approximation of characters, only the amplitude

characteristics are specified. Therefore consider the expression

SS-S(A)S(-A) =- _-A')'f(-

- ((74)

(1A)'f(A) 2

which represents the square of the magnitude of operating transmission

coefficient. It is desired to approximate this function to a desired character-

istic. As for the value of 1, it may be arbitrary, because if I is too small

compared with the degree of g(k), one can multiply the numerator and the

denominator by (l-X ) before splitting S(Q) from Eq. (74). If only the input

admittance is required, the multiplication by this factor is not necessary.

One should only obtain g(k) and h(k) from Eq. (74) itself and put

Y ,( ( , _. 1, )-- ( A (75)

Although I has been said to be arbitrary, the number of cascade elements

would become larger than I first assumed, which means the increase of

degenerate elements that have not direct effect on the characteristcs.

Therefore it may be better to assume the function withl as the number of

necessary cascade elements.

Since g(k) is a Hurwitz polynomial, it is determined uniquely from Eq. (74),

but h(k) is not always unique. Even when the numerator and the denominator

is multiplied by (l-k 2)s, there may be various ways of sharing the factor to

multiply into h(k). Take (l+X), then it means to insert a cascade section at

the output terminals; take (1-k), then the same at the input terminals. By

an appropriate choice, the network may be transformed into a desirable form.

Now the characteristics are specified only on the imaginary axis, it may

be convenient to use w j in place of X itself. First, for the bar network,
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the simplest, one has

SS-. (76)

where G(w) is an even polynomial of degree 2n in w, and G(O)= 1. Now, by

the transformation
Ii

0 tan 2' (77)

depict the interval -co< w < co into an interval - 7r < 8< r (this means that the

measure has been returned to one proportional to the frequency, that is

e = W f/f). Then, since

,0 1
COS- 2 + (78)

Eq. (76) can be represented as a polynomial of degree n in cos 2 (0/ Z), and

consequently also by a Fourier cosine series of n terms as follows:

SS a..-+.,(,cOS -i . .. ; aOS jojt, (79)

Therefore the given characteristics should be approximated by a Fourier

cr-ine series of n terms. Toconvert this series into an expression in w,

it will be convenient to use

co O -(1-46)) "r+k l1+joJ,
cos rO 2' 1+1-a (80)

As alternate methods one may use the transformations

1 r 1-r /w (80a)
," +&J, or 1 ,. or 1+.._

and carry on approximations in terms of X. Especially, if a low-pass f-lter

is aimed, Wagner-cbaracter or Tchebycheff character will mostly be used.

For the former, one should put

3-tofl (81)
Sg= 1+ (1--)"
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and for the latter

Sg = 1+. -1+ CO2 {.(..) }( ,(82)

Here n is taken to be odd, and w is the limiting point of the pass band.

In case of simple open-branch networks, the form of S3 is

S, = (83)

like Eq. (76), but here if G(w) is an even polynomial of degr.ee Zn, it is only

necessary that n>l. Thus, if A(w)2 is the characteristic to be approximated by

SI (this may also be given graphically), One may determine G(w) by

approximating A(w )2 (+w 2f by an even polynomial of degree 2n, or, instead,

make A(w )2/ (l+, 2)n-1 and approximate it by a Fourier series, as in the

case of bar networks.

To have Wagner characteristics, one should put

s9 1+ 2)8 (84)

To have Tchebycheff ones,

= 1+ .(I+ cos{2(n - )cos' - )

Now, in general cases, one has a form

s- ( ') (86)

fI=0, the matter is just the same as in lumped ones; well established

principles apply themselves and any filters of high class can be designed

with Tchebycheff characteristics in the pass band as well as in the stop band.

However, in this case, as stated already, all cascade elements are degenerate

and have no effect on the characteristics, only increasing the delay time. In
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other words, this way does not make full use of all possibilities of elements.

However, it is still an unsolved problem to make the characteristic of a form

of Eq. (86) into a Tchebycheff one in the pass band as well as in the stop band.
5 8Kasahara and Fujisawa 5 , and Kuroda made proposals on this point, but the

writer has obtained a fairly satisfactory method by extending Bennett's theory.

In the method by Kasahara and Fujisawa, first the form of

,'-.1h- (87)

is determined from the lumped network theory. Then by choosing a correction

term M(k) M(-X), one obtains

MA A) At ---A) h A ) h --.,i
.f S 1.(88)

Here the correction term has a denominator (1-XZ)I, smaller than I in the

pass band, and larger than 1 in the stop band; a Tchebycheff characteristic

of a bar network may be used, for example. The characteristic thus obtained is

not a perfect Tchebycheff, but is surely improved as compared with that of

Eq. (87).

Next, Kuroda's method is an extension of that presented by the writer

for bar networks and simple branch networks, and belongs to one of applying
18Darlington's image characteristic functions . That is, let

S, -U, cosh': o (89)

and represent O=E 1 +02+.... + n. Make e. such that cosh 0. are irrational

reactance functions (Q-functions) with congruent real ranges and imaginary

ranges. Some of them are chosen to have poles at X =+ 1. By this method a

function will be obtained that has poles on any points, and has a Tchebycheff

characteristic in the pass band. The method to be described below is also an
18 19extension of a method often used in lumped network theory , and is

essentially identical with Kuroda's, but for calculation purposes, it will be

more convenient. (Call it "X-parameter" method).
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By the transformation

X - (90)

convert the pass band (O,jw1 ) into the imaginary axis (-j 00,0) of X , stop

band (ca , j co) on the real axis (0, 1). Then

(91)

where X, V'1 /

(91a)

has a magnitude 1 in the pass band, is greater above jwI , and becomes

infinity at jw . Thus construct a function

~=. 1 ~2, ~(92)

where -./-I-, ., = 4/1+ai

(92a)

then it has also a magnitude I in the pass band, is infinity of multiplicity 2 at

X j FI' j q .' *", of multiplicity r at X= 0o, and of multiplicityI at) )+ 1.

In the next place, make q from 0 through

1_+q (93)
l' -q

then q has the property of a reactance function in the pass band, takes a

value between 0 and 1 above jw , ' and becomes 1 at each attenuation poles.

Now make

I 2 . (+91+q - 2 (94)
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then is a characteristic function with a Tchebycheff behavior. That is, i

is positive real on the imaginary axis of X, oscillates between 0and 1 in the

pass band, and have poles of multiplicity 2 at each " at co, and of

multiplicity I at + 1. With an appropriate constant h, make

S9 -= 1+hW (95)

then a desired function of Tchebycheff behavior will be obtained. 4)T may also

be obtained, with convenience, from

f (x+ x )'1+ (1-,+)' (#:'-tP1' (96)

Thus a Tchebycheff characteristic function has been obtained with poles

at arbitrary points. The next problem is to choose the position of these poles

so that the characteristic is also Tchebycheff in the stop band. One method

is to adopt a function known for lumped networks and add poles at + 1. Of

course this will not give a strict Tychebycheff character, but would be better

than those by Kasahara and Fujisawa previously cited. It may be a method

to draw graphs of log (X +Xv )/ (X - v ) for various Xv and construct log 0 by

combining them graphically, just as could be done in image parameter design,

combining various m-derived sections. But a perfect characteristic could not

be expected by such an unsystematic way. In contrast to this, the method

of successive approximation described below will give almost perfect

Tchebycheff characteristics. This corresponds to an entension of the method

given by B.J. Bennett 2 2 for lumped networks, and to obey the sequence, his

method will be followed in short. Call a function 4 T for the sake of

convenience a front-side function, which represents tl;e square of the

magnitude of a characteristic function having given pass and stop bands, and

call a function with inverse pass and stop band a back-side function. If a

front - side function is Tchebycheff in both bands, its reciprocal constitutes a

back-side function, Tchebycheff in both bands. First make a front-side

function which is Tchebycheff in the pass band with arbitrary poles in the stop
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band. This is the 1st approximation. Obtain its zero points and make a back-
side function which is Tchebycheff in the stop band with poles at the zero points

of the Ist function. The reciprocal of this function gives the Znd approximation.

Again make a front-side function with poles at zeros of the back-side function.

Repeat this procedure, and a characteristic will be attained which as near to

the ideal as desired. The convergence of this procedure is fairly fast, and

it is satisfactorily practicable. Thus a function can be obtained which is

Tchebycheff in both bands, without using elliptic functions. *

One may try this method to distributed networks but he will find that it

does not go well by itself. The reason is as follows. Since attenuation poles

exist at X =+ 1, the back-side function must be 0 at these points, but it is not

possible to make a characteristic function with zeros at arbitrary points. But

if the idea of potential theory is made use of, a function can be made, which

has a good approximation. The method will be explained from the beginning.

Let the pass band be 0 - w, stop band w2 ~ co, and poles at X=+ 1 with

a multiplicity 1. Assume transmission zeros j q1,..., in an arbitrary way,

and make

"" -' " " '" ' '/(97)

in a similar manner as before. Make 4' from this 4, then the first

approximate front-side function will be obtained. The only needed are

the roots of q 0 and therefore (with A an integer) from = -1, that is, from

2.'tan-' +/tan-' (2p+17 (98)

the roots x01 , X02,..X0n will be obtained (to facilitate the calculation, one

should make use of a table of trigonometric functions). The corresponding

values of X will give the zeros of the front-side function. To make a back-

side function that has poles at these zeros, first define y by

VA = ' (99)

*(Translator's note: This method of successive approximation was further

extended by K. Hatori.)
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where

k .. (99a)

and let the values of y be y01, y02 ,'. that correspond to x 01, X 02 ,'''" Make

.-, ( y- )( (100)

where Yo +.? 2 /ow2 . Thus 0has zeros at y yo, i.e. atX +1, but upon

making y , y=yO becomes a pole of 'P, and one cannot have a back-side

function. Obtain zeros Yl' ..2. " "m of 'P ~on the imaginary axis and construct

a function

II y.-y, --.-' (lo

I, 11 (101)

then this function has a zero at y y 0 , poles at y-v, and is almost Tchebycheff

on the imaginary axis of y (stop band in X ). The reason can be explained with
an application of the potential theory , as seen in the following. Consider

log 0 to be a complex potential on the X-plane. As seen from Eq. (99), two

Riemann surfaces can be considered to be connected at the stop band on the

imaginary axis. Place a line conductor on this portion, and put a shield between

the two surfaces. If we consider only one side of the surface, there will be

a continuous distribution of electric charge on the conductor. The distribution

of charge is determined by the flow-function

imnag logy argy (101a)

The charge contained between any two points in the stop band is equal to one

7r - th of the difference of arg on the right side of the two points. Quantize

this charge. For this purpose divide the conductor into portions each with 2

units of charge, and place these charges at the centers of each portions.

Through this procedure, the potential, where the conductor was originally

located, is almost Tchebycheff. The locations of quantized charges are such

that arg* is odd multiples of w, i.e.,
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2 Xtan- ' -Y .- Itan- I  Y -(2/,+l)n10.

This gives nothing but the yl... Ym formerly stated. Thus it can be seen

that Eq. (101) is approximately Tchebycheff. In that way the Znd back-side

function is obtained. To proceed further, one should make a front-side

function with poles at y." A numerical example will be shown:

(lOZa),= 1,w =/, m---3, i 5

Start with all poles at X=oo. Table 1 is the result. y's are converted

into X's for back-side functions.
Table 1. An example of succesive approximations

0 2 '4

X1 1 0.7186 I 0.71823 0.71821
Back-Side 1 0.8080 0. 0'A5 ).

X3 a k i 0.9583 0. 95(W)6 0. 95603

_ _ _1 _ _ _ ....... ... .............. ..I.3 8 7

X0 J 0. 16 9 j 0. 1,156 JO. 14540 " " 1. 14540

jO. 529. j 0. 4682 j 0. ,167,3 j 0. 16757

Front-Side I j 0 121 j .6)69 j 0.90582 j (.)90;81

j04 1. 833' j 1. 6640 j 1. 66349 j 1. 663.16

x. j .0:178 j 3. 705.1 j 3.70217 j ,. 70211

XAS j C

One will see that approximation is fairly good at the third. Transform

the front-side function obtained from the 7th approximation into that of X,

one has

-K F (0 O..+.q -0+ 2.)2 (0.82060+ AV)' (0.54.B0-A )' ' O. 26546+A 2)
-. K .. (..... 0 .5-+ A2 )' (2. 84U577-FA ' (11.6287+ A,) ....

(0. 068001+) 2  (102b)X

The deviation of minimum attenuation in the stop band is within 0. 1 db, and

can be considered to be perfectly Tchebycheff.

To add words to the X-parameter method, although needless to say,

those corresponding to Eqs. (82) and (85) can be obtained also as special

cases.
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In the last place, citations will be made on matching networks. Heretofore,

both terminating admittance were taken to be 1, but here they are assumed not

to be equal. Let these be G 1 and G2 , and also

G = G, 0,*, k - ,-(103)

The frequency band of matching required is assumed to be (fl' f as shown

in Fig. 20, with f 0 at the center. Obtain X from Eq. (1). Since the

0 ,f fo 4

Fig. 20. The characteristic of a matching network

characteristic is periodical, it is only necessary to have a good match in the

interval (fl, f 0 ). In terms of X, it is to have a match in (jwl, j co) where

o = tan f (103a)2fo

This is a kind of a high-pass filter, but since there are no requirements on

the attenuation in mismatch ranges, so that no finite frequency transmission

zeros are necessary, and a network of a simple configuration will be

satisfactory. Shunt capacitances cannot be used because X =co is in the

pass band. It follows that a bar network or a simple short-branch network

will be the representative ones.

Now, S(.) for different terminating admittance should be written

kA+GB+G-'C+k-'I) (104)
S() =---- . ..---- - ...2

and therefore for a bar network

S(A) 9() 
(105)

where
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g(A) = kv,+Gu+G-,u.+k-,v, (106)

and in this case one has

k() =7 (0) . -- 1 (107)

Conversely, to obtain the polynomials when g(k) is known, one has to

proceed as stated before. First obtain h(k) from

g(A) g(-A)-(A) h(-A) = (1-A)" (108)

where it is so chosen that

k-k-I (109)
h(0) =---2 --

From this obtain m(k) and n(k) by Eq. (72), aid separate them into even

and odd parts respectively:

"I(A) =kV2(A")+G" ,, ',
n(A) k-lv,(A)+G r',(A). (110)

As for approximation of the characteristics, X should be replaced by

1A in the foregoing representations, because X =o is at the center of the

pass band. But the parameters should be so determined that the condition

Eq. (107) is satisfied.

For a Wagner characteristic, one shall put

(k k()1
4( i-JA)"

Let n= 1, for instance, then one has

G (111a)

which means a unit element G, and is the same obtained elsewhere hitherto,

because G =iG 1G 2 .

Let n= 2, then one has
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c (lnb)G , = V kG. G , --= G (1 b

and since there is a relation

l G, o G, G,,I Gng G Ig 1:2:1 (111c)

the result is the same as obtained so far. It was anticipated that even when

n is equal to or larger than 3, the sucessive ratios, taken in a similar way,
10would be in the relation of binomial coefficients 10  But calculations do not

follow the anticipations. The anticipation seems to hold if k is nearly

equal to 1.

To have a Tchebycheff character,

2B=1+lCsnc' (2 1+2 l)1i 1

will do. In order that Eq. (107) be satisfied, 6 should be determined from

(k-k-') = (7R+ cos {ncos'(l+2a,,")) (113)
2

Or, if one would follow the x-parameter method, he has to put

X= , ,-i, - Vo'i'+ "  (114)

and make

SS 1+8
(XI,2_x I- (115)

Since it is the magnitude of the reflected wave that is of major problem in

a matching network, the echo transmission coefficient T(k) will be of more

direct significance than th- operating transmission coefficient. The minimum

echo attenuation will be 9, :ified to be a certain db in the matching band.

Needless to say, there is a relation between T(k) and S(k) such that
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)- (116)

and hence Eq. (115) can be rewritten as

TT- 1+ a {(X,+.)" Off)A2} (117)

20

Fig. 21, shows the relation among k , f1 and n for the minimum echo

100

4//202

22

0 f1/2 10

Fig. 21. Design chart for bar matching networks (minimum echo attenuation

30 db)

attenuation of 30 db.

Next, for a network of simple short-branch type, S(X) takes the form

(118)

S(A) - i-A)
and to find the polynomals, one should make use of the relations

(119)
9(0) g(-A)--h(A) h(-A) - -A (1-02 )"

m(,) =G-' w2()+ kA vA), (120)
.(A) = GA u,()+k-'A v,(A), j

Here it should be noted that the constant terms of V (X) and V2 (X) are equal to or

or greater than 1. But since there are no means to ascertain whether this

condition is satisfied or not, when determining g(k), one should see it in

invidual cases.

Now the approximation of the characteristics should be considered.

Since, in general,

a p(A-A) -1+ (121(-A



PIBMRI-1003- 62 46

for a Wagner character one should take

SS = 1- (122)

For a Tchebycheff character,

S9 1+ +co c9k +ncost(2 I±"!L'i)} (123)

or

- - - (124)

In these cases, h, 6, etc. , should be so determined that the constant terms

of v 1 and v2 are equal to or greater than 1.

6. SYNTHESIS THEORY OF DISTRIBUTED TWO-TERMINAL NETWORKS

In this chapter the focus of interest will be shifted on the synthesis of

2-terminal networks. This problem has a certain concern with synthesis

of 2-terminal networks without mutual inductance in case of lumped networks.

In case of lumped networks, theories are known as those given by Bott
Dfi11, iys 12  13

and Duffin , by Kiyasu and by Miyata which correspond to the extension

of Bott and Duffin's. But all of these could not be applied to distributed

networks in original unmodified forms. Only the idea used by Miyata may

be applied, and the method below follows his idea.

The principle lies in the dissociation of a network into a number of

partial networks with reference to the even part of the admittance. In case

of a lumped networks, ladders of L and C are used as partial networks,

whereas in case of distributed ones, instead, tree-and-branch networks in

a broader sense are used, like those described in previous chapters.

If the admittance has poles on the imaginary axis, then thdy can be

easily taken off as shunt reactances. Therefore the given admittance may

be taken to have no poles on the imaginary axis from the beginning. An
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admittance with no poles on the imaginary axis can be uniquely specified by

its even part, as the network theory says. Divide this even part into a
sum of a number of even functions, each of which satisfieo the condition of the
even part of an admittance (that is, non-negative on the imaginary axis).

Then an admittance will be determined, for each of these, that has the
specified even part, with no poles on the imaginary axis. The sum (i.e.,

the parallel connection) of these admittances will be equal to the original,

from the uniqueness above stated.

The input admittance of a 4-terminal network with an admittance G at

the end is

Y(A) =Y 1 1(A- 1(
(125)

and therefore its even part becomes

G(A) Y( G- +YY(()-' (126)

That is, G(X) is determined only by Yi 2 (X) and Y2 2 (X ). However, since

Y(X) has no poles on the imaginary axis, the residues of Y12 and Y22 are

compact, and Y11(M) is determined necessarily from these. Now, suppose

the 4-terminal network were of a tree-and-branch type. Then it can be

written that

,vI(A) Y(A) - ( A . (127)
1'22( A) (A)

so that the polynomial defined by

n(A) = v,(A)+G.,(A), (128)

is a Hurwitz polynomial with a constant term 1, and hence

()--G.(1- 2' f(A)', (12"9)
G(A) n) (-A)
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Conversely, if G(X) has zeros only on the imaginary axis excluding

origin and on + 1, as shown in Eq. (129), then it is possible to make a

tree-and-branch network (in a broader sense) having such an even part.

Here, if i, the number of the cascade element is insufficient, Yz 2 (X) and

Yi1 (k) may be determined after multiplying a factor (1 - )s into the

numerator and the denominator of Eq. (129).

Now, make the even part from the given admittance, it may in general

be written in the following form

G(A) - (130)

where n(k) is a Hurwitz polynomial with a constant term 1 and its degree is not

smaller than n. Reexpand the numerator in terms of (I - X 2), one has

G(A',=X - (131)g-o ,,(A) n(--A)

It may be seen that this can be realized by a parallel connection of

simple open-branch networks, if all the coefficients bi is positive.

Even if some of b, are negative, they may be made positive, in most

cases, by Miyata's method of "degree ascending". The method is as follows:

Let O(X) be a Hurwitz polynomial. Multiply 0(k) 0t(-)) into the numerator and

the denominator of G(X). Re-arrange the numerator in the form E.1. (131).

Choose #(X) so that all the coefficients come out positive. In practical
2

executioan, it will be convenient to use x = 1- X , and represent the numerator

in terms of X, and express also the polynomial qS(X ) (-X) as one in X with no

roots in x> 1. Unfortunately, however, this method is not always applicable.

The necessary and sufficient condition of possibility of turning the coefficients

of polynomials into positive is, in general, that "the coefficient of the term

of the highest degree is positive, and the polynomial has no positive real
1l4

roots n1. The p--oof is simple, but not referred here. The above condition,

is stated in terms of X, says "G(X)has no zeros on the imaginary axis or

between +1 on the real axis. " Roots on the imaginary axis may be expressed by



PIBMRI-1003-62 47

admittance with no poles on the imaginary axis can be uniquely specified by

its even part, as the network theory says. Divide this even part into a

sum of a number of even functions, each of which satisfies the condition of the

even part of an admittance (that is, non-negative on the imaginary axis).

Then an admittance will be determined, for each of these, that has the

specified even part, with no poles on the imaginary axis. The sum (i.e.,

the parallel connection) of these admittances will be equal to the original,

from the uniqueness above stated.

The input admittance of a 4-terminal network with an admittance G at

the end is

! Y M = Y .(,M) .+-G '
() (125)

and therefore its even part becomes

G() {Y()+ Y(- A) GY (16)
G(2 -G2- Y2(A)I'(16

That is, G(X) is determined only by Yl2(X) and Y?,(X). However, since

Y(X ) has no poles on the imaginary axis, the residues of Y12 and Y2 2 are

compact, and Y 1 1 ) is determined necessarily from these. Now, suppose

the 4-terminal network were of a tree-and-branch type. Then it can be

written that

y 22 .() - u,(A) Y,(A) - - .. (127)

so that the polynomial defined by

(A) v()+G. 1(A), (128)

is a Hurwitz polynomial with a constant term 1, and hence

G.(-A 'f(A) 3  (9)
G() (A) K",A)



PIBMRI-1003-62 50

The network obtained is shown in Fig. 22 and its characteristic in

0.3070 0.9517 0.3070

Fig. 22. A bar filter

Fig. 23. The abscissa is taken in the frequency f itself, here and hereafter.
20.

S10

2) A simple open-branch filter 00 'o,2 10

1"'6 =0.2 (b - 0.8 db)N be o sh0nt emn r=2 = 0. 8 Fig. 23. ordinate: Attenuation (db)
Number of shunt elements r=-2

Number of cascade elements 1= 3 SS = (1-10.79411At -75.79798'-27.4 ,i134

-355.22522A-158. 39596A'°) (I- )',

I+12.00255A"±13 .+I 421A (133b)
Y2 () - 8.69088A+34.95359A3+25.17109A, *

The network is shown in Fig. 24. Adopt another sign of h(k) (i.e., the inverse

1.02961 1.0296

0.3781 0.2941 0.3781

Fig. 24. A simple open-branch filter (1)
network), then

1+ 12.002.55 I' -13. 0142 A
1. 107NA-+6.72874P' (133c)

and one obtains a network in Fig. 25. The characteristics of these are shown

0.7109 3.4008 0.7109

Fig. 25. A simple open branch filter (2)
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20 -

in Fig. 26. -
10~

00 '2 Jo

Fig. 26. ordinate: Attenuation (db)

3) A tree-and-branch type filter

Cutoff W c=1, bp=0.5 db

Minimum attenuation in stop band bs=50 db

Bandwidth factor k > 0.750
These requirements are satisfy by taking n= 6 and k= 0.8.

A :' -f " ." l-£,' ,1:. - I (5R352. d, 0I 855.7
S I; I , h", (133d)

It should be noted that, upon taking out elements from the input admittance,

the effective figures decreases on and on, so that it is needed to take

sufficient decimal places at the beginning. This does not mean that fZr4, etc.,

should be determined precisely, but that, if they were once determined, the

error of calculation followed afterwards should be as small as possible.

In the above example, five zeros were supplemented after each effective

figures of 0 and U 4 ' as if their effective figures were of 11 digits.

A l 277R W i25722, I 98!1 " '1114;'

f 1 5149 (,9 .'i I 1 12914 46687)'

4 () 42721 12A : 0 111110 NNW , (133e)

h, v . .. *--A--l. 16602 14515A1'-O. 11791 87,987K'".

An example of the network obtained is shown in Fig. 27. It is also

0.527 0.4197 0.391 0.7437 0.8227

Fig. 27. A tree-and-branch filter

realizable in other order of transmission zeros. The characteristic is shown

in Fig. 28. Since, in this case, it contains 5 cascade elements a variety of
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60

i 40

30
20 - - - -

10-

0fo12 f,

Fig. 28. ordinate: Attenuation (db)

networks will be obtained by multiplying g(X) by (l+X ) (s< 5) and h(X) by
(l-X)s

4) A tree-and-branch filter in a broader sense.

W1l, bp=0. 4 db, bs=33 db

1+2000AI WA+ 0. 87)2S =1+
(AA+2.25)" (A 2+16)2

, (A) = 1+2.1328187A+2.7813922A' (133f)

+2.0491042'+l. 2425705A',

h(A) = 1.0807 A'+l.2422600A'.

Its configuration and characteristic are shown in Figs. 29 and 30.

,0zl4 Q.40 4 - - - -

il02143 [o6I 40 -- .o.03941 00o602 .--

02676 2.4046 0.4360 I
IM 20 __

Fig. 29. A tree-and-branch filter X

in a broader sense

Fig. 30. ordinate: Attenuation (db)

5) An example using the x-parameter

First, adopt a characteristic given in lumped networks.
= 1, k= 0.5 (consequently w 1 = l/ ')c

I AI(AI+0" I88108), I33g
89 = 1-. 81  +1) (133g)

The network configuration is as shown in Fig. 31, but it can be changed
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0.6031

0.5504 0.6558

Fig. 31.

in a symmetrical one, Fig. 32, by multiplying g(X) by 1+X and h(X) by 1-).

0.3751

0.657 0.5711
0.9666

0.3423 0.3423

Fig. 32.

Their characteristic is shown in Fig. 33.
/so

50

:to

20 - , /0

Fig. 33. ordinate: Attenuation (db)

Here, let us make a network with the same transmission zero, where

the cascade elements have contributions to the characteristic.

A (133h)
(0. 897745+')' (1+x)(Vi.-T +x)'f(0. WM45Zx), ' m(~
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from which one has

S 3 = 1 _1 . _ 7 ( ' 3 : . 6 1 6 ) 1 .( A ' + 0 . 4 4 %. . 9 6 ) 1
(0. .881_08A+1) (1--A3)V (133i)

The network configuration is shown in Fig. 34, and its characteristic in

0.3881

2.2490

0.5241 0.5241

Fig. 34. Design by the x-parameter method

Fig. 35. One will see how the characteristic has been improved.

70

60-

40

30

20

10 -- /

0 f012 he

Fig. 35. ordinate: Attenuation (db)

6) A bar-type matching network

Let Gl1, G 10, W 1=1 and Tchebycheff behavior of n= 3. Then one
has 6= 0. 0405 (minimum echo attenuation bt=14 db), and

,..25--0.57 +.729,--A" (133j)SS -.- (I- 2)'l

The values of the three elements are 1. 6347, 3.1623 and 6.1173 from

left to right.

7) A simple short-branch matching network
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Given requirements are G 1= 1, G 2 =10, 1 = 3 (fl =2f 0/3) and 6=0.01

(bt= Z0 db).

n= 2 will be sufficient for the requirements, so that one has

ss 1+0.40025 {4V -:--"6 f 12V2 -i.7A6 (133k)S +0,105-A"( !--A" )*I

The configuration for this case is that shown in Fig. 36, but upon

0.1852 
13.1317 

1 -

1.6496 5.2165

Fig. 36. A simple short-branch matching network (1)

changing the position of taking out a shunt inductance, one will obtain a

network Fig. 37, in which the discrepancy of the element values is smaller

than the former to be more profitable in construction.

12.5459

0.8575

I '10
1.8348 5,8022

Fig. 37. A simple short-branch matching network (2)

8. CONCLUSIONS

It has been described about the synthesis of distributed networks with

prescribed characteristics and also about approximation of the characteristics.

In specifying the characteristics, only operating transmission coefficients

were used, but it is also possible to specify them in terms of voltage

transmission coefficients, of current transmission coefficients or of image

parameters. In either case, one should obtain the Y-matrix or the input

impedance, and follow the synthesis in like manners. In Chapter 6, it has

been described to determine a network for a specified even part of its admit-

tance. This is, in fact, of equal in effect to specify the voltage transmission

coefficient.
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In Chapter 5, the description was chiefly on low-pass filters, and only
the matching networks were discussed as high-pass filters, but it is also
possible to design high-pass filters with transmission zeros at finite
frequencies. Here the transmission zero at X=0 is necessarily simple, and
the network may be constructed with shunt inductances, unit loops and cascade
elements. The so-called high-pass filters become band-pass if used in the
second or higher modes. One should choose a type to fit his aim.

In Chapter 7, there are shown only those that have wide bands. This is the
feature of the procedure. It was only possible to obtain narrow band ones
by simple methods hitherto known. On the contrary, a narrow band networks,
designed by the new method, would include elements of very large or very
small characteristic admittances leading to difficulty of construction. It
would be desirable to construct a network with all equal characteristic

admittance (with different lengths), but it would need a thoroughly different
system of theorem from that of this article.

In the last place, it should be taken into consideration that the junctions

of elements do not act as ideal ones, but the problem should be solved in
parallel with experiments.

The author expresses- deep gratitude to Mr. Kiyasu, head of transmission
research section, for the thorough guidance provided.
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